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A model accounting for the boundary zone of elevated thermal resistance at 
the wall and the convective heat transport in a fill is proposed. 

The problem of vapor condensation in capillary-porous solids (CPS) and at surfaces 
embedded in a granular bed is of great interest for the chemical technology, geothermo- 
dynamics (for geothermal heat extraction), heat techniques of increasing oil and gas produc- 
tion by pumping steam into the critical zone of the stratum, and the design and calculation 
of heat pipes and other parts of power plants and devices. 

Calculation of the heat exchange during vapor condensation in such structures is 
complicated by the many factors determining heat transfer in such processes. They include 
the packing geometry, the framework thermal conductivity, the effect of capillary forces, 
and the thermohydrodynamics of constrained flow around the fill zone and CPS's, which in 
the final analysis affect the laws governing the effective coefficients of thermal conduc- 
tivity and viscosity. 

The present paper is concerned with the heat exchange during condensation of motionless 
vapor on an inclined smooth plate, embedded in a granular bed. Besides its separate 
interest for various technological processes, this problem can be considered as a certain 
approximation in simulating heat exchange during condensation in a CPS, which would make it 
possible to analyze the effect of a number of important factors on heat transfer. 

The published papers [i, 2] provide only very simple models of the condensation proc- 
ess in granular beds. Thus, a self-similar solution is given in [I] for the problem of 
heat exchange in motionless vapor condensation on an inclined plate in a fill under the 
assumption that the effective thermal conductivity coefficient across the condensate film 
is constant for boundary conditions of the first kind pertaining to the film. It is con- 
sidered that the filtration rate of the film obeys the Darcy law. For the limiting cases, 
the ordinary differential equation obtained can be integrated in finite form. An approxi- 
mate expression for the local heat transfer coefficient is proposed on the basis of these 
solutions. 

An integral method for heat exchange calculations is given in [2] under the same 
assumptions , but with additional requirements, similar to Nusselt's problem for motionless 
vapor condensation on a smooth plate. A comparison with the authors' experimental data 
(these data are the only ones known in the literature) has shown satisfactory agreement 
between the theoretical and experimental results for some of the operating parameters. 

At the same time, many of the tabular data given in [2] indicate that the heat ex- 
change law deviates considerably from the proposed models [i, 2], which has not been 
explained within the framework of these models. 

We propose here a model which accounts for the convective component in heat transfer 
and the presence of a boundary zone in the downward running film, where the effective 
thermal conductivity coefficient differs substantially from its value in the main body of 
the film (which is primarily due to the different porosity values of the granular medium 
in the flow core and in the wall zone). 
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Fig. i. Mean temperature profile in the liquid film near a solid wall. 

Fig. 2. Dependence of Nu* on the Re number for p = i.I. i) Re* = 1.5; 2) 
3.8; 3) 9.7; 4) 11.2; the dashed curves represent the self-similar solution 
[i] for the corresponding Re* numbers. 

Fig. 3. Effect of the film thickness A on the heat exchange. 1-4) Calcula- 
tion based on (21) for ~ = 0, 0.5, 1.7, and 2.6, respectively; 5-7) experi- 
mental data from [2] (p s 0.9, p = i-1.9, and p = 2-2.9, respectively). 

We assume that the outer boundary of the film is at the saturation temperature Ts, 
there is no friction between the phases, and the physical characteristics of the liquid 
do not vary. The plate temperature T w is kept constant. Heat transfer is realized due to 
the effective thermal conductivity of the liquid across the film and by convective trans- 
port in the longitudinal direction. 

According to Darcy's law, the liquid velocity in relatively "thick" (in comparison 
with the radius R of grains in the fill) films is assumed to be 

V - -  (PL --" Pg) g COS ~ .  (1) 

The heat transfer equation and the boundary conditions are written in the following 
form: 

OT 02T 
U Ox ae ' Oy2 (2) 

y - - 8 ,  T = T s ,  (3) 

y=O, T = T w ,  (4) 

where u e is the effective thermal diffusivity coefficient. 

The film thickness ~ is determined from the equation of balance of the condensate mass s 
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Fig. 4. Parameter p as a function 
of the Reynolds number Re* for 
flow around a fill element. I) 
Calculation based on expression (24) 
for c = 2.0; 2) sand, d = 0.8 mm; 3) 
sand, d = 0.5 ram. The hatched areas 
represent the data on heat exchange 
for a fill consisting of Nichrome 
pellets with d = 0.5 mm. 

d (9z. U6) = (q/r) dx. (5) 

The measured film temperature profile in the fill [2] indicates the presence of a 
thin zone with the thickness h at the plate surface where the slope of the temperature 
profile of the condensate film differs substantially from its slope in the main body of 
the film. This indicates that the values of the heat transport coefficient differ con- 
siderably from the effective values in the outer part of the film. However, this fact was 
neglected entirely in [I, 2]. 

The existence of a layer with elevated thermal resistance at the surface of solids 
immersed in dispersion systems was considered in calculating external, nonstationary heat 
exchange in fluidized systems [3, 4] and also in problems of heat and mass exchange in 
filtration through immobile grm~ular beds (for instance, [5]). The presence of a thin zone 
of elevated thermal resistance at the surface of a fill-embedded solid that is at a certain 
given temperature was taken into account in [6] by means of boundary conditions of the 
third kind at this surface. The authors of that paper assumed a zone thickness equal to 
the grain diameter d in the fill and a parabolic profile of the probability density dis- 
tribution of grain centers in the surface zone. 

We shall also use boundary conditions of the third kind in order to take into account 
the wall zone in the condensate film. At the distance y ~ h in the main body of the flow, 
the temperature profile is given in the following form (Fig. i): 

T(y) = T~ + AT.j- ry, V = (dT/dy)v~a. (6) 

In contrast to [6], we shall use a somewhat simplified method to determine the rela- 
tionship between the temperature deficiency AT and the gradient (dT/dy) for y + 0. By 
representing the temperature profile in the wall layer in the form of a Taylor series and 
retaining only terms of the first order, we obtain 

T@) = T~+ r~y, r~ = (dT/dg)p~o. (7) 

From the equality of thermal fluxes at the boundary y = h, we have 

r = (<o/�89 r~ ,  

whence, with an allowance for relationships (6) and (7) for y § h, it follows that 

AT : h f ( ~ d ~ - - l ) .  

Then, boundary condition (4) can be rewritten thus: 

dT 
T p Tw for .Y = 0, (8)  

dy 

where  p = h ( l e / l w -  1 ) .  

The f o r m  o f  b o u n d a r y  c o n d i t i o n  (8) i s  i d e n t i c a l  t o  t h a t  o b t a i n e d  i n  [ 6 ] .  They d i f f e r  
f r o m  e a c h  o t h e r  o n l y  by  t h e  s p e c i f i c  f o r m  o f  w r i t i n g  t h e  p a r a m e t e r  p .  The p r o p o s e d  r e p r e -  
s e n t a t i o n  o f  t h e  p a r a m e t e r  p i s  c o n v e n i e n t  f o r  e s t i m a t i n g  i t  by  means o f  s i m p l e  s e m i e m p i r i -  
c a l  m o d e l s  and  f o r  p r o c e s s i n g  e x p e r i m e n t a l  d a t a  on t h e  b a s i s  o f  e x p e r i m e n t a l  v a l u e s  o f  
the effective thermal conductivity coefficient ~e within the film and the temperature dis- 
tribution across the film. 

Thus, introducing the notation @ = (T -- Ts)/(T w -- Ts) and K = ae/U , we state the 
problem of heat exchange during motionless vapor condensation in a fill in the following 
manner: 
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ao a2o 
ax ay 2 (9) 

O - - p  - -  

ao 
= I for y = O, 

@ (10) 

0 = 0  for x : O ,  ( i i )  

0 = 0  for y = 6 .  (12) 

Let us introduce the integral-mean film thickness 6 over the plate's length L: 

6 

6 = L -I ~ 6 (x) dx. 
0 

The balance equation (5) assumes the following form: 

pU-6 = qL/(2r). 

Instead of boundary condition (12), we have 

0--0 for y = ~ .  

!We represent O (x, y) as a superposition of two functions: 

(13) 

(14) 

o (x, y) - v (y) + u (x, y), 

where v(y) is determined by solving the problem 

dy 2 F=o 

while u(x, y) is the solution of the equation 

Ou a2u 
ax ay 2 

for the boundary conditions 

and the initial condition 

au ) =0,  Uly__~=O 
u - - p  - ~ y  .~o 

vj~=~ = o, (15) 

(16) 

(17) 

ul~=o = -- v (y). 

The solution of problem (15) is given by 

v (y) = (-~-- y ) / ( 8 +  p). 

(18) 

For the problem (16)-(18), we correspondingly have 

u (x, y) -- ~ c~ [cos (%~y) q- (%~p)-i sin (%~y)] exp (-- %~ • 
n=l 

where X n are the eigenvalues constituting the roots of the transcendental equation 

From the initial condition, we obtain 

c~ = - -  2 p I [ 6 ( ~  p~ @ 1) - -  p]. 

Thus, the general solution of the problem defined by 
follows: 

(9)-(13) and (14) is written as 
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~--- y ,~-~ 2p exp (--  xX~ x) 
O ( x , y ) =  6 + p  ,~=~ [cos +. (~p)-~ sir 

- 8-(~ p~+  1) -- p (19) 

Hence, for the thermal flux averaged along the plate, we find the following with an allow- 
ance for exp(--KXnZX) << i: 

~,eAY 2 ~ XehY 

We introduce the following dimensionless numbers and parameters: 

�9 aR Re-= qL N u = - - "  
r~ ~ 

P r  ~ - -  

R . A " N u * =  Nu  . Re* Ar*--s  , Pe* Ar* v 
Re* ' ae R 

R 

Then, for the mean film thickness, we obtain from (13) A = Re/(2Re*), while the following 
holds for the heat-transfer coefficient according to (20): 

N u  ~ - -  q- 2Pe* ~ %~-= L -~ [(1 -I- %n ~ R2P ~) A - -  ~]-1 (21) 

or 

2 2 Nu* = Re-~-pRe* " -}- 4Pe* %72L-2[(1 q- i~R2~) Re--2pAr*] -I- (22) 

Here, the first term characterizes the heat exchange resulting from the thermal conductivity 
characterized by the effective thermal conductivity coefficient %e, while the second term 
accounts for the contribution of the convective thermal flux. 

For p = 0 (single-layer model with a constant thermal conductivity %e over the cross 
section of the film) and without consideration of the convective mechanism of heat transfer, 
we obtain from (22) 

Nu* = 2Re -1. (23) 

This result was obtained in [2] by using the integral method without allowing for convec- 
tion in the wall zone. 

The order of magnitude of the wall zone thickness h is estimated on the basis of 
dimensionality relationships: 

= hlL N (v/m) 1/21L .., (vRIU) !/21L = % (R/L) (Re*) -1/2 

Thus, the following holds for p: 

= p/R = %(%e/%w -- I) (Re*) -I/2 . (24) 

Figure 2 shows the behavior of the Nusselt number Nu*, calculated by means of (22). 
The numerical values of the Re* parameter (the Reynolds number for flow around a fill 
element) correspond to the experimental values obtained in [2]. Region I in Fig. 2 
corresponds to heat exchange resulting primarily from thermal conductivity characterized by 
the effective coefficients X e and X w (the value of Xe was determined experimentally in 
[2]). Region II is characterized by a significant contribution of convective heat trans- 
port. 

Analysis of relation (22) shows that the characteristics of the wall zone affect con- 
siderably the heat exchange only in region I; it is actually here that considerable differ- 
entiation with respect to p values is observed for a fixed Re* number. At the same time, 
this differentiation is virtually absent in region II. 
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Comparison with the experimental data from [2] can be performed more conveniently on 
a Nu vs A diagram on the basis of relationship (21) (see Fig. 3). These data are satis- 
factorily described within the framework of the proposed model for suitable values of the 
parameter p. 

The behavior of p is shown in Fig. 4. The ~ values were obtained by processing the 
correspondingexperimental results from [2]. These data can be approximated by an expres- 
sion of the type (24) with the proportionality factor c = X(le -- lw- I) = 2-3. 

Thus, consideration of the boundary layer with elevated thermal resistance makes it 
possible to predict accurately the behavior, and estimate the value, of the heat transfer 
coefficient in motionless vapor condensation on an inclined plate embedded in a fill. 
Nevertheless, the accumulated experimental data are insufficient for drawing unambiguous 
conclusions concerning, for example, the effect of the thermophysical characteristics of 
the fill material, which is indicated by the considerable scatter of data on p for Re* = 
3.5 (hatched areas in Fig. 4) in attempts at processing the experimental results [2] on 
the heat transfer in a fill of Nichrome pellets. 

Analysis of heat transfer for large Reynolds numbers on the basis of expression (19) 
is difficult because of poor convergence of the series (this corresponds to the range of 
small and medium values of the dimensionless group ~x/~a). In connection with this, it is 
more convenient to use the solution obtained by means of the integral Laplace transform: 

O(x' Y)--** ( ~l )2]/'~- ---exp (yp + x~ )@,  ( y ,  2]/_~.~. -{-v~)p + 

• ~,  ~_V'~"x- + exp 2n6---y + • ~ ,  2n6---y + . 

Then, we obtain the following for the thermal flux: 

[' (q) ) ] q=~eAT p exp (I)* + exp + Z  ~ O*(D+z) . 
,,=1 P P 

2 [ exp(--zZ)dz is the error function, z = K/~-x/p and D = n~//-~-. Here ~*_ ~r~ 

2 

For large values of the argument, the error function can be approximated with an 
error whose absolute value is smaller than the last retained term by using the series 

**(z)--~-'/~exp (--z2) ( lz 2z 31 _ + . . . ) .  

Retaining the first term of the expansion and averaging the thermal flux along the plate, 

we find 
2%eAT 1 / 2 . L _ _  

~=I 0 

For relatively "thick" films, where the effect of the wall zone can be neglected, 
the latter expression for the mean thermal flux becomes 

so that the following holds for the heat transfer coefficient: 

Nu-- 2 (pe,)~/~ 
VY 

which coincides with the self-similar solution for an infinitely thick film [i], averaged 
along the plate, and serves as the asymptotic form of the relationships derived above for 
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heat transfer in the range of small and medium values of the ~/~2 parameter under the 
assumption that the wall zone has been neglected. 

NOTATION 

a, thermal diffusi~ity in the granular bed; L, plate length; h, wall zone thickness; 
q, local thermal flux; q, thermal flux averaged along the plate; r, latent heat of phase 
transition; R, grain radius; T, Tw, and Ts, temperature, plate temperature, and temperature 
at the film's outer boundary, respectively; U, filtration rate; x and y, longitudinal and 
transverse coordinates, respectively; ~, heat transfer coefficient; ~ and ~, local and mean 
film thickness, respectively; %L, %w, and %e, thermal conductivity of the liquid, the wall 
zone, and the main body of the film, respectively; 0L and pg, densities of the liquid phase 
and vapor, respectively; ~, permeability of the bed; ~ , angle between the longitudinal 
coordinate x and the gravity acceleration vector g; e, angular velocity; ~ and v, dynamic 
and kinematic viscosity of the liquid, respectively. 
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PROPAGATION OF VIBRATIONS IN A SUSPENDED GRANULAR BED 

A. F. Ryzhkov and B. A. Putrik UDC 532.529.5:66.036.5 

The influence of the elasticity and relative motion of the continuous medium 
on the hydrodynamics of a suspended vibrating bed is discussed. A solution 
is given for the boundary-value problem of small pressure disturbances 
propagating in the bed. The results are compared with experimental data 
and calculations based on existing models. 

i. PHYSICAL MODEL 

The action of vibrations on disperse materials for the purpose of intensifying heat- 
and mass transfer processes has been utilized for some time now with optimistic results 
[i, 2]. On the other hand, the theory of vibrofluidization [3-5] is far from complete in 
either the quantitative or the qualitative aspect. It fails to describe high-frequency 
(>i0 Hz) resonance effects, which have been noted by many researchers, including Kroll [3] 
and Gutman [4], and which enhance heat and mass transfer significantly at their peak devel- 
opment [2]. The discrepancy with experimental results is an outgrowth of a common practice 
in the mechanics of fluidized systems (FS's) [6], namely the representation of the gaseous 
medium as an incompressible fluid, which limits the application of the theory to parameters 
that support the customary relation between the equilibrium pressure Po and its variation 
P: Po >> P. The latter corresponds quite well to " low" (APb << Po) fluidized beds, but 
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